ИИ и машинное обучение

DIGITALTEH — надежный технологический партнер, который может помочь в создании эффективных, автоматизированных и высокоточных систем с использованием современных технологий искусственного интеллекта.
ЧТО МЫ ДЕЛАЕМ
Системы прогнозирования и рекомендаций
Автоматизируйте рутину принятия решений и прогнозируйте события с помощью вероятностного анализа и персонализации пользователя.
Обработка естественного языка
Расширенные тексты, речь и когнитивная аналитика
Структурированные и неструктурированные данные
Чат-боты
Компьютерное зрение
Визуальная классификация природы объекта, распознавание изображений и обработка видео в реальном времени
Интеллектуальный анализ данных и аналитика
Расширенный анализ данных, кластеризация, обнаружение закономерностей, статистический анализ и визуализация данных.
Почему стоит работать с нами
Методология проектов по искусственному интеллекту и науке о данных существенно отличается от традиционных исследований для проектов по доставке программного обеспечения.

Он требует от компаний:

Развивайте новые навыки работы с данными и искусственным интеллектом (такие как НЛП, компьютерное зрение, машинное обучение, глубокое обучение и т. д.)
Создайте новую инфраструктуру для больших данных и развертывания моделей (часто в облаке)
Внедрите новую культуру сотрудничества между бизнесом и учеными данных
DIGITALTEH может помочь задействовать возможности ИИ или заполнить пробелы в данных и аналитике для компаний, которые не имеют внутреннего опыта или не хотят нанимать новые таланты, пока не будут доказаны преимущества ИИ.

DIGITALTEH фокусируется не только на исследованиях, но и на поставке комплексных решений, начиная с проектирования решения и заканчивая развертыванием ML-модели и интеграцией в существующую или вновь разрабатываемую клиентскую среду.

НАШ ПОДХОД
Понимание бизнеса
Сбор и понимание данных
Построение конвейера данных
Настройка среды
Обработка данных, исследование и очистка
Моделирование
Разработка функций
Обучение модели
Оценка модели
Развертывание
Подсчет очков
Демонстрация
Мониторинг
Поддержка

КАК МЫ РАБОТАЕМ
Наша главная ценность заключается в том, чтобы предоставлять ценные и экономически эффективные решения для наших клиентов. Вот почему мы разработали подход к проектам НИОКР, который позволяет нам видеть прогресс на каждом этапе и предлагать решения поэтапно, позволяя клиентам решать, стоит ли вкладывать дополнительные усилия или требуется изменение направления.


1.1
Технико-экономическое обоснование
2–4 недели
Исследуйте применимые наборы данных с точки зрения объема данных и набора полей; создать ETL
Тестируйте различные модели машинного обучения, алгоритмы, библиотеки
1,2
Построение PoC
1–3 месяца
Выбрать наиболее подходящий набор данных, модель и параметры модели
Подготовьте модель машинного обучения к моделированию с использованием производственных данных.
Разработка подходящего подхода к интеграции
2
Выход в эфир
Продолжительность зависит от проекта
Подготовьте и интегрируйте готовую к производству модель машинного обучения
Оптимизируйте и улучшайте модель с новыми производственными данными, весами, параметрами
Улучшенное развертывание модели
3
Поддерживать
Поддержка и мелкие улучшения
Мониторинг эффективности

Технологии
Инженеры DIGITALTEH работают с самыми популярными современными технологиями, включая облачные решения MLaaS мирового класса и классические библиотеки или библиотеки с открытым исходным кодом для глубокого обучения.

    DIGITALTEH — надежный технологический партнер, который может помочь в создании эффективных, автоматизированных и высокоточных систем с использованием современных технологий искусственного интеллекта.
    ЧТО МЫ ДЕЛАЕМ
    Системы прогнозирования и рекомендаций
    Автоматизируйте рутину принятия решений и прогнозируйте события с помощью вероятностного анализа и персонализации пользователя.
    Обработка естественного языка
    Расширенные тексты, речь и когнитивная аналитика
    Структурированные и неструктурированные данные
    Чат-боты
    Компьютерное зрение
    Визуальная классификация природы объекта, распознавание изображений и обработка видео в реальном времени
    Интеллектуальный анализ данных и аналитика
    Расширенный анализ данных, кластеризация, обнаружение закономерностей, статистический анализ и визуализация данных.
    Почему стоит работать с нами
    Методология проектов по искусственному интеллекту и науке о данных существенно отличается от традиционных исследований для проектов по доставке программного обеспечения.

    Он требует от компаний:

    Развивайте новые навыки работы с данными и искусственным интеллектом (такие как НЛП, компьютерное зрение, машинное обучение, глубокое обучение и т. д.)
    Создайте новую инфраструктуру для больших данных и развертывания моделей (часто в облаке)
    Внедрите новую культуру сотрудничества между бизнесом и учеными данных
    DIGITALTEH может помочь задействовать возможности ИИ или заполнить пробелы в данных и аналитике для компаний, которые не имеют внутреннего опыта или не хотят нанимать новые таланты, пока не будут доказаны преимущества ИИ.

    DIGITALTEH фокусируется не только на исследованиях, но и на поставке комплексных решений, начиная с проектирования решения и заканчивая развертыванием ML-модели и интеграцией в существующую или вновь разрабатываемую клиентскую среду.

    НАШ ПОДХОД
    Понимание бизнеса
    Сбор и понимание данных
    Построение конвейера данных
    Настройка среды
    Обработка данных, исследование и очистка
    Моделирование
    Разработка функций
    Обучение модели
    Оценка модели
    Развертывание
    Подсчет очков
    Демонстрация
    Мониторинг
    Поддержка

    КАК МЫ РАБОТАЕМ
    Наша главная ценность заключается в том, чтобы предоставлять ценные и экономически эффективные решения для наших клиентов. Вот почему мы разработали подход к проектам НИОКР, который позволяет нам видеть прогресс на каждом этапе и предлагать решения поэтапно, позволяя клиентам решать, стоит ли вкладывать дополнительные усилия или требуется изменение направления.


    1.1
    Технико-экономическое обоснование
    2–4 недели
    Исследуйте применимые наборы данных с точки зрения объема данных и набора полей; создать ETL
    Тестируйте различные модели машинного обучения, алгоритмы, библиотеки
    1,2
    Построение PoC
    1–3 месяца
    Выбрать наиболее подходящий набор данных, модель и параметры модели
    Подготовьте модель машинного обучения к моделированию с использованием производственных данных.
    Разработка подходящего подхода к интеграции
    2
    Выход в эфир
    Продолжительность зависит от проекта
    Подготовьте и интегрируйте готовую к производству модель машинного обучения
    Оптимизируйте и улучшайте модель с новыми производственными данными, весами, параметрами
    Улучшенное развертывание модели
    3
    Поддерживать
    Поддержка и мелкие улучшения
    Мониторинг эффективности

    Технологии
    Инженеры DIGITALTEH работают с самыми популярными современными технологиями, включая облачные решения MLaaS мирового класса и классические библиотеки или библиотеки с открытым исходным кодом для глубокого обучения.

     
    Ваш комментарий будет первым
    Москва, Панфилова ул, дом 3Б, строение 1, офис 16 Россия +74956648578